Major 4a

Major 5a

English 1.0
Inhalt Page
Order Information 2
General Features 3
Control Elements Major 4a 4
Control Elements Major 5a 4
Display Elements Major 4a/5a 5
Sockets Pinout Major 4a/5a 6
Rearview Major 4a/5a 6
RS232 Interface 7
RS232 Cable for Flashing/Printing/Monitoring 7
Adjustments RS232 Interface 7
Keypad Layout in Programming Mode Major 4a 8
Keypad Layout in Programming Mode Major 5a 8
Differences between Major 4a and Major 5a 8
Menu Structure 9
Software Configuration 12
Programming Short Call 12
Individual Programming of the Buttons 13
Loudspeaker Button Coding 14
Encoder Prefix 15
Transmitting 6/7/8-Tone Sequences 15
Reset to Factory Defaults 16
Channel Scanning Function 16
FMS Option 16
Muting 5-Tone Sequence 16
Sample Configurations 4a/5a 17
Sample Configurations 4a/5a, DC controlled 17
Sample Configurations Major 4a/5a, AC controlled 18
Two-Wire Connection using FT630 19
Hardware Configuration 19
Two/Four-Wire Configuration 19
Connecting Major 4a/5a --> Two-Way-Radio via Multiwire 20
Connecting Major 4a/5a --> LIM-AC 20
Table of Registers Major 4a/5a 21
Keyboard Functions 27
Reset to Factory Defaults 31
Technical Data 32
Table of Tones 32
General Safety Information 33
Returning of Old Equipment 33
Release Notes 34

Order Information

| Ord.-No. | Description |
| :--- | :--- |\quad| Attention: Power supply units for Major |
| :--- |
| 681000 |
| 4a/5a are not included! |
| 14000 | | Major 4a |
| :--- |
| Major 4a with FMS option |
| Major 4a with BOS option | | Major 5a |
| :--- |
| Major 5a with FMS option |
| Major 5a with BOS option |\quad| Power supply unit (230/12 Volt), suitable for Major 4a and Major 5a |
| :--- |

General Features

The Major 4a/5a is the newer design of the well-known Major 4/5 An alphanumeric LC Display with background lighting has replaced the LED Display. A gooseneck microphone with a high dynamic range is part of the standard equipment of Major 5 a as well as Major 4a. By using a plain text based menu structure the programmable features have been extended significantly and at the same time programming has become more straightforward. All buttons are freely programmable. Hence, each of the buttons can be assigned two different functions.

A radio set can be connected directly (multiwire) or via 2- or 4-wire line. All viable tone sequences can be transmitted and interpreted.

There are two sockets for headsets. One can be used for a remote PTT foot switch. The 7 digital outputs can be used for remote channel select or for other functions. For operation an external 12volt power supply is necessary.

The Major 4a/5a can be programmed via the serial interface or keypad. It is also possible to connect a printer or a terminal to the serial interface. For printers with a parallel interface an additional interface is available.

Control Elements Major 4a

Control Elements Major 5a

Display Elements Major 4a/5a

LC Display

All alphanumeric readouts are presented by a LC display with background lighting.

Status LEDs

Carrier Display (Squelch)

The carrier display LED $\boldsymbol{\nabla}$ can be controlled by voice (2-wire connection) or via squelch input (using the radio set). If the light is on, the radio circuit is occupied, that is, a carrier signal (carrier is keyed) is present.

PTT Display (Push-to-Talk)

The PTT display LED \mathbf{A} is on, if the transmitter is keyed. Keying of the transmitter is achieved by pressing the PTT button during telephony or by sending a call.

Loudspeaker Display (Incoming Call)

The loudspeaker display LED is on, if the loudspeaker or the earphone capsule in the handpiece are switched on.

Rearview Major 4a/5a

PWR operating voltage 12 V , max. 1,5 A
inside: positive terminal, outside: earth

Sockets Pinout Major 4a/5a

All of the schemes show the sockets as viewed from the rear of the Major.

Pinout S/E

Radio Circuit (ST1)
$A F$ input B
$A F$ input A
Squelch input
GND
output +12 V, max. 200 mA sender keying active, low AF output A
AF output B

All AF in/outputs are equipped with transformers and, hence, potential-free. PIN 5 is for supply (+12V) of external devices (LIM-AC, FT634C, FT633AC).

Attention: Do not use PIN 5 to supply a radio set. 200 mA output current is not sufficient.

Pinout I/O
Digital In/Outputs (ST3)

IN/OUT 0
IN/OUT 1
IN/OUT 2
IN/OUT 3
IN/OUT 4
IN/OUT 5
IN/OUT 6
GND

The digital connections can be configured as inputs or outputs, respectively. Usually, these are used as outputs for remote channel select.

There are two sockets for connecting a headset. One is for connecting the headset, the other for the use of an external PTT button (e.g. foot switch)

Pinout HS
Headset (ST2A)

GND
AF input (mic. +)
AF earphone
GND earphone
GND AF input (mic. -)
PTT, active GND
Pinout PTT
Headset (ST2)

GND
GND AF input (mic. -)
NF earphone
GND earphone
AF input (mic. +)
PTT, active GND

Pinout RS232
(ST4)

NC
NC
TxD
RxD
GND
NC

To socket RS232 a printer can be connected.

RS232 Cable for Flashing/Printing/Monitoring

RS232 25-pin connector on computer
RS232 socket on Major

Adjustments RS232 Interface

9600 baud, 8 data bits, no parity, 1 stop bit, no protocol

RS232 9-pin connector on computer RS232 socket on Major

Button Fal reduces by 1 and button increases by 1 .

To the buttons S1 bis $\mathrm{S} 4, \forall$ and $\#$ the values A to F are assigned.

Keypad Layout in Programming Mode Major 5a

Long pressing of the buttons 1 to 6 allows to achieve the additional values A to F.

The call button reduces by 1 and the PTT button increases by 1 .

Differences between Major 4a and Major 5a

Major 4a and Major 5a show the following differences:

1. different keyboards
2. Major 4a includes a handset, Major 5 a does not
3. minor differences in the software, resulting from 1. and 2.
4. optional telephone interface only for Major 4a

Menu Structure

Simultaneuos pressing of the buttons \star and $\#$ opens the menu.
Due to the different keypad designs, for the same operations different keys are used in Major 4a and Major 5a. In the following, the handling of Major 4a is described. For the respective keys that have to be used in Major 5a please consider the table below.

Function	Major 4a	Major 5a
next menu	F3]	\star
select menu item	F4]	\#
escape discarding changes	F ${ }^{\text {F }}$	\star
save changes and escape	F4]	\#
increase value by 1	F2	\sim
reduce value by 1	F1]	[.w)

- enter the register number to be programmed
- with 222 the factory default values are programmed

```
Register: 000
Code 12345
```

- overwrite the code with the desired values

FF3 = escape menu discarding changes
[F4 = save changes, escape menu

*
$\begin{aligned} \mathrm{GN} & =\text { gooseneck } \\ \mathrm{HA} & =\text { Handapparat } \\ \mathrm{HS} & =\text { Headset }\end{aligned}$
HS = Headset

- displayed 3 seconds
or
[F2] = increase value by 1
Fif = reduce value by 1
F3 = escape menu discarding changes
[F4] = save changes, escape menu

Menu Structure

continued

F3 = escape menu

Menu Structure

continued
select number:

* und \#
\square

F3 \Rightarrow F3 \Rightarrow F3

Adjust clock Next menu	$\begin{array}{ll} : & \text { F4 } \\ : & \text { F3 } \\ \hline \end{array}$		Serial number Next menu	$\begin{aligned} & \text { : F4 } \\ & : \\ & \hline \end{aligned}$
F4				
		- displayed for 3 seconds		
Digital (0-6) :	3		Serial number:	0123/06
Analog (00-59) :	29		Mainboard:	0456/06

FI = one digit to the left
[F2] = one digit to the right
The onboard clock is factory calibrated. Before changing the values please note down the current values. Higher values accelerate the clock, while lower values slows it down. Changes made in digital have more effect than changes made in analog. Fine adjustment must be done in analog, step by step.

F3 = escape menu discarding changes
[F4 = save changes, escape menu

Software Configuration

Programming Short Call

The example below shows the programming of short dial 1 in register 001 with tone sequence 12345.

Please press the following buttons:

The line „Code" shows the current programming. You can overwrite these with your own values.

The menu can be quit without changes at all times using button F3

Button F4 stores the displayed values.

As every button of the Major $4 a / 5 a$ is freely programmable, registers 174 and 175 have to be programmed with the appropriate values of the short call button (Z-button).

Commonly, reigister 174 (function of Z-button, short) is programmed with 22F01 and register 175 (function of Z-button, long) is programmed with 00000 . The first zero in register 175 disables action after long pressing of the Z-button

The impacts of the single digits of register 174 are as follows:

1. digit = 2 --> function --> transmit call
2. digit $=2$--> transmit short call
3. digit $=F$--> input necessary
4. digit $=0$--> ID mode / 5 tone sequence
5. digit = 1 --> not applicable for 5 tone sequence

Programming of register 174 is achieved following the procedure below. Register 175 is programmed analogously.

Individual Programming of the Buttons

It is possible to program each button of the Major 4a with two different functions.

The duration of pressing the button (short or long pressing) decides, which of the functions is exercised. If a button is pressed shorter than a second, the function programmed as "button, short" is exercised. Pressing it longer than a second triggers the function "button, long". If no function is programmed for "button, long", the function "button, short" is exerciesed immediately.

Each register consists of 5 digits. The value of the first digit is important to define the function (see also: Keyboard Functions). The choices available for digits 2-5 depend on the function chosen by the first digit.

Below you can find an example for the programming of button 1 .

Programming "button, short":

(short tapping)

F4
\checkmark
Register:

1. digit $7=$ function --> enter selected number
2. digit $1=$ enter number --> new input
3. digit $1=$ input value 0 bis F, here: 1
4. digit $0=$ not applicable
5. digit $0=$ not applicable

The following steps are necessary to save the changes made in the register.

Usually, the function for long pressing of button [1] is not programmed. However, as an example the speaker volume is set to level 1.

Programming "button, long": (long pressing)

Loudspeaker Button Coding

The value 00000 in register 133 must be set to 41109 and saved subsequently.

1. digit

4 = function --> volume
2. digit

1 = adjust volume
3. digit $\quad 1=$ volume level: 0 bis F, here: 1
4. digit $\quad 0=$ minimum volume
4. digit $0=$ minimum volume
5. digit $9=$ maximum volume

This example shows the coding of the loudspeaker (LS) button for adjusting the loudness when pressed for a longer time.

The parameters for pushing the LS button are coded in register 177.

1. digit 4 = function --> volume
2. digit $1=$ adjust volume
3. digit $\mathrm{F}=$ manual input
4. digit $0=$ minimum volume
5. digit $9=$ maximum volume

The following steps are necessary to save the changes made in the register.

Now tap button 10 once short and once long (in menu "select number:"). After short pressing the display shows 1 , long pressing activates volume level 1 of the loudspeaker.

Encoder Prefix

Register 010 defi nes the number of permanently programmed prefix digits and, hence, also the number of the arbitrary digits.
If "FFFFF" is programmed in register 010, all 5 digits have to be entered via the keypad. For example, if digit 1,2 and 4 are permanent (values 3,4 and 5) and digit 3 and 5 have to be entered via the keypad, register 010 must be programmed with 34F5F.

EEEEE switches off the input prompt ("select number:").

select number:

Transmitting 6/7/8-Tone Sequences

To transmit an 8-tone sequence upon pressing the call button, the following register entries are necessary. Here, the first 5 digits are entered via the keypad (or depend on the entry in register 010 --> Encoder Prefix) and the last 3 digits are attached from register 015.

Register 172:

$$
\begin{aligned}
& 2=\text { function }-->\text { transmit call } \\
& 0=\text { entered call } \\
& 0=\text { not applicable } \\
& 5=8 \text { tone sequence } \\
& 0=\text { not applicable }
\end{aligned}
$$

The 8-tone sequence consists of the 5 digits that are entered via the keypad followed by the last 3 digits from register 015 (personal identification code).

Kompetent für Elektroniksysteme

Reset to Factory Defaults

Using the following steps, Major 4a can be reset to factory defaults.

Attention! All parameters are reset to the default values without further confirmation.

By entering 223 instead, the potis are also reset.

Channel Scanning Function

The channel scanning function is activated if the waiting time in register 067/5 is programmed NOT to be zero. Zero deactivates this function.
The scanner will wait for at least the programmed waiting time per channel. Just before the end of the waiting time, the channel is checked for a carrier. If no carrier is detected the next channel will be scanned.
Scanning will stop when a carrier is detected if "scanner stops on carrier" (register 068/1) is programmed. If not the scanner will be stopped for an additional 100 ms . During this time the scanner will scan for a tone. If a tone is detected, the scanner will wait for the scan waiting time $(068 / 2+3)$. If a call is decoded during that time the scanner stops. Otherwise the next channel is scanned.
The channel range programmed in register $067 / 1-4$ will be scanned. If register $067 / 1+2$ is programmed with 'EE' the specified channels programmed in register 070-074 (EEPROM table) will be scanned. Scanning the table can be aborted by pressing FF.
In order to scan channels 1,5 and 6, register 070 is programmed with $0105 x$ and register 071 with 06FFx.
After decoding a call the scanner stops for the programmed loudspkeaker time (050/1-3) which is retriggered by a carrier and/or PTT. Furthermore, the scanner can be switched off by activating the loudspeaker (LS button) manually.
Scanning can be initiated by hanging up the handpiece (050/5). The scanner can also be activated using the "loudspeaker off" function (function 4; second digit: 0).

FMS Option

The FMS option allows for the status input and the reception of orders according to the German Funkmeldesystem (FMS).
As for this option buttons 0-9 are used as status buttons, manual selection of a 5 -tone sequence is not possible.

Muting 5-Tone Sequence

Muting (Register 018) is triggered by the first two tones and lasts until the end of the tone sequence. The first tone must be a valid tone in terms of duration. As soon as the second tone is recognized, handpiece and loudspeaker are muted. For digits that are programmed with ' F ', all tones are valid. To disable muting ,EE' is programmed.

Sample Configurations 4a/5a

The following situation shows the easiest way for remote radio control using a Major 4a/5a. If a remote control is not required, a 7 -wire line is sufficient for AF, squelch and PTT.

Sample Configurations 4a/5a, DC controlled

If only a local 2 -wire line is available the following set-up using a DC line interface FT630-2 is highly recommended. In this configuration remote channel select and duplex mode are not possible.

Several control panels in parallel circuit

$2 \times$ FT630-2, only if carrier signaling is to be transmitted!

FT630-2, only if carrier signaling is to be transmitted!

Sample Configurations Major 4a/5a, AC controlled

FT633AC or
LIM-AC (only 2-wire)

Several control panels in parallel circuit --> LIM AC has to be equipped with a notchfilter to suppress the PTT keying tone.
 FT633AC (with remote channel control) or FT634 (without remote channel control)

Two/Four-Wire Configuration

The Major 4a/5a can be configured for 2 -wire and 4 -wire connection. Starting with software version 2.0 switching from 2 -wire to 4 -wire is done by programming register 051/4.

Two-Wire Connection using FT630

Over longer distances the radio set can be controlled via a 2-wire line. If PTT is keyed at the Major, a DC voltage is applied to the line in addition to the audio signal. This voltage is analyzed in the FT6302 and the PTT relay turns on the transmitter. In the reverse situation the FT630-2 is able to apply a DC voltage to the line if an incoming signal (squelch) is present.

If the DC voltage is used for transmitter keying as well as for detection of an incoming signal, no transmission is possible while a squelch signal is detected.

Instead of the FT630-2 (DC) the line interfaces FT634C, FT634 oder FT633AC can also be used. For these no DC coupling is necessary and additional features are available, e.g. the transmission via digital in-/outputs (alarm in case of dysfunction, housebreaking, fire...) and remote channel control.

Register 069/1 defines if PTT keying is conducted by the PTT keying tone or by a DC voltage.

Connecting Major 4a/5a --> Two-Way-Radio via Multiwire

All audio in/outputs of the Major $4 a / 5 a$ are equipped with transformers and hence are potential-free. If no potential-free in/outputs are available at the radio, in both cases one of the audio connections has to be grounded, preferably by connecting pins 1 and 8 to GND pin 4 . Switching from 2 - to 4 -wire is carried out by programming register 051/4.

PIN 5 is for supply (+12 V) of external devices (LIM-AC, FT634C, FT633AC).
Attention: Do not use PIN 5 to supply a radio set. 200 mA output current is not sufficient.

Connecting Major 4a/5a --> LIM-AC

The LIM-AC can be connected to Major 4a/5a with a 8-terminal line. Commercially available computer cables may be used.

Table of Registers Major 4a/5a

Reg. Function

000 Short dial 0
001 Short dial 1
002 Short dial 2
003 Short dial 3
004 Short dial 4
005 Short dial 5
006 Short dial 6
007 Short dial 7
008 Short dial 8
009 Short dial 9
010 Permanently programmed prefix encoder digits
EEEEE switches off „select number"
011 1 ${ }^{\text {st }}$ Digit -> Language
0 = German
1 = English
2 = French
3 = Dutch
4 = Italian
Monitor after power on:
$4^{\text {th }}$ Digit $0=$ off; $1=$ on
014 Intercom tone sequence (DCBA)
$5^{\text {th }}$ Digit -> ringing on decoding
with 1 sec. duration
and current volume
$0=$ no ringing
015 Personal identification code
(= ID-code), if activated
016 Prefix digits for decoding
017 Standard acknowledgement
019 Prefix digits for printer output
020 Decoder 1
021 Decoder 2
022 Decoder 3
023 Decoder 4
024 Decoder 5
025 Decoder 6
026 Decoder 7
027 Decoder 8
028 Decoder 9
029 Decoder 10

Reg. Function

Configuration 1 for decoder 1

```
\(1^{\text {st }}\) Digit -> ring tone type (alarm clock)
    \(0 \quad=\) no ring tone
    1-A \(=\) ring tone 1 to A
    \(B-F=\) ring tone \(1-5,10\) repetitions
```

$2^{\text {nd }}$ Digit -> ring tone length (alarm clock)
0 = permanent
$1-\mathrm{F}=\mathrm{n} * 200 \mathrm{~ms}$
$3{ }^{\text {rd }}$ Digit -> ring tone volume(alarm clock)
$0-9=$ volume 0-9
A-F = offset against current volume
$4^{\text {th }}$ Digit -> ringing volume length
0 = permanent
$1-\mathrm{F}=\mathrm{n} * 1 \mathrm{sec}$.
$5^{\text {th }}$ Digit -> ringing volume
0-9 = volume 0-9
A-F = offset for current volume

Configuration 1 for decoder 2
032 Configuration 1 for decoder 3
033 Configuration 1 for decoder 4

```
Configuration 2 for decoder }
1 'st Digit -> ID mode
    0 = 5-tone sequence
    1 = call sequence -> ID-code
        dual sequence
    2 = ID-code -> call sequence
        dual sequence
    3 = 6-tone sequence
    4 = 7-tone sequence
    5 = 8-tone sequence
    6 = not used
    7 = no ID-code
    A = emergency call with 5-tone
        sequence
    B = emergency call with 5tone seq.
        (ZVEI-appending tone burst)
    C = emergency call with 6-tone
        sequence
        (NL-elongated 6 th tone)
```

0 = 5-tone sequence
1 = call sequence -> ID-code dual sequence
2 = ID-code -> call sequence dual sequence
3 = 6-tone sequence
4 = 7-tone sequence
5 = 8-tone sequence
6 = not used
7 = no lD-code
A = emergency call with 5-tone sequence
B = emergency call with 5tone seq. (ZVEI-appending tone burst)
C = emergency call with 6-tone sequence (NL-elongated 6 ${ }^{\text {th }}$ tone)

Foremergency call NL the $5^{\text {th }}$ tone of the sequence is always the car's ID-code. Thus, the $6^{\text {th }}$ tone is programmed as the $5^{\text {th }}$ digit in the decoder (020029).

> D = emergency call with 2×5-tone sequence (Forstfunk)
$2^{\text {nd }}$ Digit -> digital output number
0 = none
1-7 = digital output number
$3^{\text {rd }}$ Digit -> digital output time
0 = off
F =on
$1-\mathrm{E}=1-14 \mathrm{sec}$
$\begin{array}{cl}4^{\text {th }} \text { Digit } & \text {-> acknowledgement } \\ 0 & =\text { no acknowledgement } \\ 1 & =\text { acknowledgement } \\ 2 & =\text { single tone } \\ 3 & =\text { Personal ID-code } \\ 4 & =\text { received code }\end{array}$
$5^{\text {th }}$ Digit -> LED/LS after decoding
041 Configuration 2 for decoder 2
042 Configuration 2 for decoder 3
043 Configuration 2 for decoder 4
044 Configuration 2 for decoder 5
045 Configuration 2 for decoder 6
046 Configuration 2 for decoder 7
047 Configuration 2 for decoder 8
048 Configuration 2 for decoder 9
049 Configuration 2 for decoder 10
050 Configuration of loudspeaker timer

$1^{\text {st }}$	Digit	$=n * 100 \mathrm{sec}$
$2^{\text {nd }}$	Digit	$=n * 10 \mathrm{sec}$
$3^{\text {rd }}$	Digit	$=n * 1 \mathrm{sec}$

$1^{\text {st }}$ to $3^{\text {rd }}$ Digit $=000->$ off
$1^{\text {st }}$ to $3^{\text {rd }}$ Digit $=$ FFF $->$ open mode
$4^{\text {th }}$ Digit $->$ Loudspeaker after picking up
the handpiece
$0=$ off
$1=$ on
$2=$ do not change
$5^{\text {th }}$ Digit ->Loudspeaker after hanging up 0 = off
$1=$ on
2 = do not change
3 = off and scanning on

051 Transmit timeout

$1{ }^{\text {st }}$	Digit	= n * 100 sec
$2^{\text {nd }}$	Digit	= n * 10 sec
$3{ }^{\text {rd }}$	Digit	= n * 1 sec
$1^{\text {st }}$ to $3^{\text {rd }}$ Digit $=000->$ off		
$4^{\text {th }}$ Digit -> operating mode, 2/4-wire		
0	= sim	lex(4-wire)
1	= dup	ex(4-wire)
2	= sim	lex(2-wire)
3	= dup	ex(2-wire)

$5^{\text {th }}$ Digit -> loudspeaker after call
0 = off (no monitoring)
$1=$ on (no monitoring)
$2=$ off (monitoring on)
$3=$ on (monitoring on)
052 Display background lighting
$1^{\text {st }}$ Digit $=n * 100 \mathrm{sec}$
$2^{\text {nd }}$ Digit $=n * 10 \mathrm{sec}$
$3^{\text {rd }}$ Digit $=n * 1 \mathrm{sec}$
$1^{\text {st }}$ to $3^{\text {rd }}$ Digit $=000->$ permanently off
$1^{\text {st }}$ to $3^{\text {rd }}$ Digit $=001$-> permanently on
053 PTT block on carrier
$1^{\text {st }}$ Digit
0 = off
1 = on
Status
$1^{\text {st }}$ Digit
0 = no state
1 = state with one digit
2 = state with two digit
$2^{\text {nd }}+3^{\text {rd }}$ Digit $->$ Status after switch on
only with FMS option
$4^{\text {th }}$ Digit -> Dispay time for state 5
$0=$ permanent
$1-F=1-15 \mathrm{sec}$.
$5^{\text {th }}$ Digit -> Dispay time for state 9
$0=$ permanent
$1-F=1-15 \mathrm{sec}$.
General configurations
$1^{\text {st }}+2^{\text {nd }}$ Digit $->$ TX pre-running time
$1^{\text {st }}$ Digit $=n * 100 \mathrm{msec}$
$2^{\text {nd }}$ Digit $=n * 10 \mathrm{msec}$

$3^{\text {rd }}$ Digit $->$ Key beep	
0	$=$ off
1	$=$ on

FFSK code

$$
\begin{aligned}
& 4^{\text {th }} \text { Digit -> ID code after PTT start } \\
& \begin{array}{c}
0 \\
=\text { off } \\
1 \\
=
\end{array}
\end{aligned}
$$

$5^{\text {th }}$ Digit -> ID code after PTT end 0 = off $1=o n$

056 General configurations
$1^{\text {st }}$ Digit -> Squelch mode
0 = active low
1 = active high
2 = audio squelch
3 = active low oder high
057 Printer set-up 1
$1^{\text {st }}$ Digit -> print header
0 = off
1 = on
$2^{\text {nd }+33^{\text {rd }}}$ Digit ->
Number of lines per page
(without header)
058 Printer set-up 2
$1^{\text {st }}$ Digit -> print transmitted call
0 = off
1 = on
$2^{\text {nd }}$ Digit -> print received call
0 = off
1 = on
$3^{\text {rd }}$ Digit -> print received emergency call
0 = off
$1=\mathrm{on}$
063 Remote channel select
$1^{\text {st }}$ to $3^{\text {rd }}$ Digit
Fixed digits in remote tone sequence (BCD)

064 Channel register
$1^{\text {st }}$ Digit -> Channel after power on
0 = reset channel
1 = previously used channel
$2^{\text {nd }}+3^{\text {rd }}$ Digit -> Reset channel 00-99

065 Channel range $1^{\text {st }}+2^{\text {nd }}$ Digit -> lowest channel $3^{\text {rd }}+4^{\text {th }}$ Digit $->$ highest channel

066 Set-up of channel select

$$
\begin{aligned}
& 1^{\text {st }} \text { Digit -> Channel select } \\
& \begin{array}{ll}
0 & =\text { no } \\
1 & =\text { one digit } \\
2 & =\text { two digits }
\end{array}
\end{aligned}
$$

only with BOS option

$$
\begin{aligned}
3(7)= & \text { 3st. channel select BOS }(4 m) \\
& \text { (with FT633-BOS) } \\
4(8)= & 2 s t . \text { channel select BOS }(2 m) \\
& \text { (mit FT633-BOS) } \\
5 \quad= & \text { one digit, permanent display } \\
6 \quad= & \text { two digits, permanent display }
\end{aligned}
$$

$$
\begin{array}{ll}
2^{\text {nd }} & \text { Digit -> Channel output } \\
0 & =\text { TRC } \\
1 & =\text { decimal } \\
2 & =\text { binary-1 } \\
3 & =\text { binary } \\
4 & =2 \times \text { BCD }
\end{array}
$$

Remote channel select
5 = with guard tone
6 = without guard tone
7 = without guard tone, without TX, without DC
$3{ }^{\text {rd }}$ Digit -> Channel bits
0 = normal
1 = inverted
$4^{\text {th }}$ Digit -> Number of channel bits 1 to 7
$5^{\text {th }}$ Digit -> Channel acknowledgement
0 = normal (BCDxy)
1 = Major 6 (CBDxy)
Set-up of channel scanner
$1^{\text {st }}+2^{\text {nd }}$ Digit -> scan starts at channel EE = array reg. 070-074
$3^{\text {rd }}+4^{\text {th }}$ Digit -> scan to channel
$5^{\text {th }}$ Digit -> holding time ($\mathrm{n}^{*} 20 \mathrm{~ms}$)

Reg. Function
068 Set-up of channel scanner $1^{\text {st }}$ Digit
1 = scanner stops on carrier
$2^{\text {nd }}+3^{\text {rd }}$ Digit -> scanner waiting time on carrier
$n n$ * 100 ms
069 Transmitter control
$1^{\text {st }}$ Digit -> mode
0 = stored PTT keying tone
$1=$ TRC
2 = DC transmitter keying on
$2^{\text {nd }}-5^{\text {th }}$ Digit -> keying tone frequency or TRC guard tone
$2^{\text {nd }}$ Digit -> n * 1000 Hz
$3^{\text {rd }}$ Digit -> n * 100 Hz
$4^{\text {th }}$ Digit -> n * 10 Hz
$5^{\text {th }}$ Digit -> $n * 1 \mathrm{~Hz}$
Keying tone $\quad 0000=$ off
TRC $\quad 0000=2100 \mathrm{~Hz}$
070 Scan channel $1+2$
071 Scan channel $3+4$
072 Scan channel $5+6$
073 Scan channel $7+8$
074 Scan channel $9+10$
$079 \quad 1^{\text {st }}-33^{\text {rd }}$ Digit $->$ max. length of $6^{\text {th }}$ tone $4^{\text {th }}+5^{\text {th }}$ Digit $->$ min. length of $6^{\text {th }}$ tone

080 Reference values for decoding
$1^{\text {st}}-3^{\text {rd }}$ Digit -> max. length of first tone
$1^{\text {st }}$ Digit $\quad->\mathrm{n} * 500 \mathrm{~ms}$
$2{ }^{\text {nd }}$ Digit $\quad->n * 50 \mathrm{~ms}$
$3^{\text {rd }}$ Digit $\quad->$ n*5 ms
max. value $=255-->1,275 \mathrm{~s}$
$4^{\text {th }}+5^{\text {th }}$ Digit -> minimum length of all tones
$4^{\text {th }}$ Digit $\quad->n * 50 \mathrm{~ms}$
$5^{\text {th }}$ Digit $\quad->\mathrm{n} * 5 \mathrm{~ms}$

Reg. Function
081 Reference values for decoding
$1^{\text {stt}} 3^{\text {rd }}$ Digit -> max. length of remaining tones
$1^{\text {st }}$ Digit $\quad->\mathrm{n}$ * 500 ms
$2{ }^{\text {nd }}$ Digit $\quad->\mathrm{n}$ * 50 ms
$3^{\text {rd }}$ Digit $\quad->$ n * 5 ms
max. value $=255$--> $1,275 \mathrm{~s}$

$$
\begin{aligned}
4^{\text {th }} \text { Digit }-> & \text { time-off decoder after } \\
& \text { transmitted tone sequence } \\
= & * 100 \mathrm{msec}
\end{aligned}
$$

$5^{\text {th }}$ Digit -> tone table for encoder and decoder
0 = ZVEI
1 = CCIR
2 = ZVEI 2
3 = EEA
Reference values for encoding
$1^{\text {st }}+2^{\text {nd }}$ Digit $->$ length of first tone
$1^{\text {st }}$ Digit $\quad->\mathrm{n}$ * 100 ms
$2{ }^{\text {nd }}$ Digit $\quad->n * 10 \mathrm{~ms}$
$3^{\text {rd }}$ Digit -> length of remaining tones $=\mathrm{n}$ * 10 ms
$4^{\text {th }}+5^{\text {th }}$ Digit $->$ time-off between call
sequence and ID-code
4 ${ }^{\text {th }}$ Digit $\quad->\mathrm{n} * 100 \mathrm{~ms}$
$5^{\text {th }}$ Digit $\quad->n * 10 \mathrm{~ms}$
Radio Mute
$1^{\text {st }}$ Digit -> used digital output
0 = off
1-7 = OUT1-7
$8=$ TX
$2^{\text {nd }}$ Digit -> digital output is low at:
$1=R X$
$2=T X$
$3=R X+T X$
Digital output is inverted (high) at:
$5=R X$
$6=T X$
$7=R X+T X$
$3{ }^{\text {rd }}$ Digit -> after-run time mute output: $=n * 1 s$

Digital output for hook
$4^{\text {th }}$ Digit -> 0-7

084 Group call decoder
$1^{\text {st }}$ Digit -> group call tone
$0-E=$ tone from tone sequence
F = group call off
$2^{\text {nd }}$ Digit -> digital output
0 = off
1-7 = digital output
8 -F $=$ special call tones (call $1 / 2$)
$3^{\text {rd }}$ Digit -> external alarm
0 = off
F =on
1-D = ajustable time, 1-14 sec.
$4^{\text {th }}$ Digit -> acknowledgement
0 = no acknowledgement
1 = acknowledgement
2 = single tone
3 = personal ID-code
4 = received code
086 Set-up of ID-code memory
$1^{\text {st }}$ Digit -> updating
0 = off
$1=o n$
$2^{\text {nd }}$ Digit -> FIFO
0 = off
$1=$ on
$3^{\text {rd }}$ Digit -> immediate display
0 = off
$1=o n$
$4^{\text {th }}$ Digit -> display FFSK codes
0 = off
$1=\mathrm{on}$
090 Set-up FFSK (ZVEI)
$1^{\text {st-}} 3^{\text {rd }}$ Digit -> limit for FFSK tone
sequence
$4^{\text {th }}$ Digit -> call
$5^{\text {th }}$ Digit -> \#

091

092

093

094

095 1 ${ }^{\text {st }}$ Digit -> set-up I/O 1 (ST3/Pin1)
$2^{\text {nd }}$ Digit -> set-up I/O 2 (ST3/Pin2)
$3^{\text {rd }}$ Digit -> set-up I/O 3 (ST3/Pin3)
$4^{\text {th }}$ Digit -> set-up I/O 4 (ST3/Pin4)
$5^{\text {th }}$ Digit -> set-up I/O 5 (ST3/Pin5)
096 1 ${ }^{\text {st }}$ Digit -> set-up I/O 6 (ST3/Pin6)
$2^{\text {nd }}$ Digit -> set-up I/O 7 (ST3/Pin7)
$3^{\text {rd }}$ Digit -> set-up TX (ST1/Pin6)
Register 095-096:
$0=$ no in/output
1 = output low active
2 = input low active ($<1,25 \mathrm{~V}$)
$4=$ input low active ($<3,75 \mathrm{~V}$)
8 = output low active
+input low active at external keying
9 = output inverted
097 Master password
099 User password
The passwords protect the EEPROM programming and the level settings.

The Master Password cannot be read out. To change the password, it is necessary to type in the master password. Only the service technician can enter the programming mode, if the user has changed or forgotten his password.

The User Password is for the general user.
$101 \quad 1^{\text {stt-}} 3^{\text {rd }}$ Digit $->$ volume of monitored tones (0-255)

The actual volume results from the volume deviation of the monitored tone sequence, the programmed volume of the monitored tones and the general volume setting.

Reg. Function
102 Digits 1-4
nn * 1 s repeating time for short call A-E

103 Short Call A
104 Short Call B
105 Short Call C
106 Short Call D
107 Short Call A
108 Function PTT2
109 Function PTT2
110 Function IN1
111 Function IN1
112 Function IN2
113 Function IN2
114 Function IN3
115 Function IN3
116 Function IN4
117 Function IN4
118 Function IN5
119 Function IN5
120 Function IN6
121 Function IN6
122 Function IN7
123 Function IN7
124 Function TX
125 Function TX
126 Function SQL
127 Function SQL
passive ==> active active ==> passive passive ==> active active ==> passive

Keyboard Functions

130 Function 0 - button, short
131 Function 0 - button, long
132 Function 1 -button, short
133 Function 1 -button, long
134 Function 2 - button, short
135 Function 2 - button, long
136 Function 3 -button, short
137 Function 3 - button, long
138 Function 4 -button, short
139 Function 4 - button, long
140 Function 5 -button, short
141 Function 5 - button, long
142 Function 6 -button, short
143 Function 6 - button, long
144 Function 7 -button, short
145 Function 7 -button, long
146 Function 8 -button, short
147 Function 8 - button, long
148 Function 9 -button, short
149 Function 9 -button, long
150 Function S1 - button, short
151 Function S1 - button, long
152 Function S2 - button, short
153 Function S2 - button, long
154 Function S3 - button, short
155 Function S3 - button, long
156 Function S4-button, short
157 Function S4 - button, long
158 Function * - button, short
159 Function * - button, long
160 Function \# - button, short
161 Function \# - button, long
162 Function F1 - button, short
163 Function F1 - button, long
164 Function F2 - button, short
165 Function F2 - button, long
166 Function F3 - button, short
167 Function F3 - button, long
168 Function F4 - button, short
169 Function F4 - button, long
170 Function PTT - button, short
171 Function PTT - button, long
172 Function RUF - button, short
173 Function RUF - button, long
174 Function Z - button, short
175 Function Z - button, long
176 Function LS - button, short
177 Function LS - button, long

only Major 5a

178 Function of volume button, short
179 Function of volume button, long

Function register for inputs (108-127)
Function register for buttons (130-179)
$1^{\text {st }}$ Digit -> Function
0 = none
1 = transmit single tone
2 = transmit call sequence
$3=$ PTT
4 = adjust volume
5 = channel select / digital outputs
6 = ID-code memory
7 = enter select number
$8=$ input of status
9 = ext. inputs
A = BOS functions
B = mode functions
$2^{\text {nd }}-5^{\text {th }}$ Digit -> depends on chosen function
Function 1 -> transmit single tone
($1^{\text {st }}$ Digit $=1$)
$2^{\text {nd }}$ Digit -> length of tone length $=n$ * 100 ms
$0 \quad=$ as long as button is pushed
$3^{\text {rd }}-5^{\text {th }}$ Digit $->$ single tone frequency
$\begin{array}{ll}3^{\text {rd }} \text { Digit } & ->n * 500 \mathrm{~Hz} \\ 4^{4 \mathrm{~h}} \text { Digit } & ->n * 50 \mathrm{~Hz} \\ 5^{\text {th }} \text { Digit } & ->n * 5 \mathrm{~Hz}\end{array}$
Function 2 --> transmit call sequence ($1^{\text {st }}$ Digit $=2$)
$2^{\text {nd }}$ Digit -> type of call
0 = entered call
1 = call back
2 = short call
3 = intercom
4 = ext. short call
5 = remote channel control call
$3^{\text {rd }}$ Digit $->$ Short call number (2 ${ }^{\text {nd }}$ Digit: 2)
0-9 = short call 0-9 (reg. 000-009)
A-E = short call A-E (reg. 103-107)
F = input necessary

```
\(3^{\text {rd }}\) Digit \(->\) intercom (2 \({ }^{\text {nd }}\) Digit: 3)
    0 = intercom off
    1 = intercom on
    E = toggle intercom (on/off)
    F = intercom input
```

$$
\begin{aligned}
& 0=\text { off } \\
& 1=\text { on }
\end{aligned}
$$

$3^{\text {rd }}$ Digit -> ext. short call (2 $2^{\text {nd }}$ Digit: 4) $0-E=$ short call n
$3{ }^{\text {rd }}$ Digit -> remote channel control call ($2^{\text {nd }}$ Digit: 4)
0 = send remote channel control call
1 = send channel request
$4^{\text {th }}$ Digit -> ID mode / tone call mode
$0=5$-tone sequence
1 = call sequence -> ID-code dual sequence
2 = ID-code -> call sequence dual sequence
ID-code from register 015
3 = 6-tone sequence
5 tones and last digit ID-code from register 015

4 = 7-tone sequence
5 tones and last two digits
ID-code from register 015
5 = 8-tone sequence
5 tones and last three digits
ID-code from register 015
6 = paging call (OPTION)
7 = free
8 = 4-tone sequence
$4^{\text {th }}$ Digit -> ID mode / FFSK mode
(except for intercom and remote channel control)

$$
\begin{array}{ll}
0 & =\text { only call } \\
1 & =\text { call }+ \text { ID-code }
\end{array}
$$

$4^{\text {th }}$ Digit -> only intercom
$\begin{array}{cl}0 & =\text { transmit intercom tone call off } \\ 1 & =\text { transmit intercom tone call on }\end{array}$
$5^{\text {th }}$ Digit -> coupling tone in tone call mode
$0-E=$ coupling tone for 2×5-tone sequence
F = no tone, break
$5^{\text {th }}$ Digit -> BAK on FFSK calls
$0-F=B A K$

Function 3 --> PTT ($1^{\text {st }}$ Digit $=3$)

$2^{\text {nd }}$ Digit -> choose microphone 0-3 = PTT started with button (ends when button is no longer pushed) 4-7 = PTT started via input (ends with function PTT off) $0,4=$ gooseneck microphone

```
1,5 = headset microphone
2,6 = handpiece microphone
3,7 = GN or HS microphone
8 = switch GN/HS microphone
F = PTT off (if started via input)
```

$3^{\text {rd }}$ Digit -> only for GN/HS switching
0 = SH microphone on
$1=$ HS microphone on
E = toggle SH/HS
F = input
$4^{\text {th }}$ Digit -> only for GN/HS switching
0 = no text display
1-F = display text for n * 100 ms
$3^{\text {rd }}$ Digit -> for PTT via button
0 = no ID code at PTT start
$4=$ short call ($5^{\text {th }}$ Digit)
$4^{\text {th }}$ Digit -> for PTT via button
0 = no ID code at PTT start
$4=$ short call ($5^{\text {th }}$ Digit)
$5^{\text {th }}$ Digit -> 0-9 $=$ short call number

Function 4 --> volume ($1^{\text {st }}$ Digit $=4$)

$2^{\text {nd }}$ Digit
0 = toggle loudspeaker (on/off)
1 = adjust volume
$3^{\text {rd }}$ Digit -> only for adjust volume
0-9 = volume
A $=1$ level up
B $=1$ level down
F = input
$3^{\text {rd }}$ Digit -> only for toggle loudspeaker (on/off)
0 = scanner off
1 = scanner is on, if loudspeaker is off
$4^{\text {th }}$ Digit -> only for adjust volume
0-9 = minimum volume
$5^{\text {th }}$ Digit -> only for adjust volume
0-9 = maximum volume
Function 5 --> channel select / digital outputs
($1^{\text {st }}$ Digit $=5$)
$2^{\text {nd }}+3^{\text {rd }}$ Digit $->$ for usual channel select
$2^{\text {nd }}$ Digit $\quad->n * 10$
$3{ }^{\text {rd }}$ Digit $\quad->n$ * 1
value range $=00-99$
FE = use working channel
FF = input via keypad

only with BOS option

$2^{\text {nd }}-4^{\text {th }}$ Digit -> for channel select BOS
001-092 = BOS channel 2 m
347-519 = BOS channel 4 m
FFF = input
$5^{\text {th }}$ Digit -> mode of operation / band location (for BOS)
0 = one-way radio, lower band
1 = one-way radio, upper band
2 = two-way radio, lower band
3 = two-way radio, upper band
$2^{\text {nd }}$ Digit -> E $=$ set digital outputs
$3^{\text {rd }}$ Digit -> 1-7 $=$ number of digital output F = manual number select
$4^{4^{\text {th }} \text { Digit }}$
$\begin{array}{cl}0 & =\text { digital output off (passive, high) } \\ 1 & =\text { digital output on (active low) }\end{array}$

Function 6 --> ID-code memory (${ }^{\text {st }}$ Digit $=6$)
$2^{\text {nd }}$ Digit

$$
\begin{array}{ll}
0 & =\text { delete ID-code } \\
1 & =\text { display next ID-code } \\
2 & =\text { display newest ID-code }
\end{array}
$$

Function 7 --> enter select number
($1^{\text {st }}$ Digit $=7$)
$2^{\text {nd }}$ Digit
0 = delete input
1 = new input
$3^{\text {rd }}$ Digit -> function delete input
0 = delete complete call
1 = delete only last input
2 = call +1
3 = call -1
$3{ }^{\text {rd }}$ Digit -> function new input
$0-\mathrm{F}=$ calling tone $0-\mathrm{E}$
F = break
Function 8 --> enter status ($1^{\text {st }}$ Digit $=8$)
$2^{\text {nd }}$ Digit
0 = delete status
1 = define status
2 = input of FMS status
$3^{\text {rd }}+4^{\text {th }}$ Digit $->$ new status
value range $=00-99$
FF = input via keypad
$3^{\text {rd }}$ Digit -> 0-9 = FMS status (for FMS)

Function 9 --> enter status (${ }^{\text {st }}$ Digit $=9$)
$\begin{array}{ll}2^{\text {nd }} \text { Digit }-> & 0=\text { squelch input } \\ & 1=\text { external muting }\end{array}$
$3^{\text {rd }}$ Digit -> for squelch input
0 = squelch off
1 = squelch on
$3^{\text {rd }}$ Digit -> for muting
0 = muting off
1 = muting on
$4^{\text {th }}$ Digit -> for squelch input
0 = muting off
1 = muting on
$4^{\text {th }}$ Digit -> for muting
0 = TX-LED off when idle
1 = TX-LED flashes when idle

only with option BOS

Function A --> BOS functions (${ }^{\text {st }}$ Digit $=A$)
$2^{\text {nd }}$ Digit -> $\quad 0=$ band location (BL)
1 = mode of operation (MO)
$3^{\text {rd }}$ Digit -> $0=$ lower band, one-way
1 = upper band, two-way
$E=$ toggle mode of operation /
band location
$4^{\text {th }}$ Digit -> $\quad 0=$ toggle locally, do not send
1 = toggle locally and send
(remote control)

Function B --> MODE Functions ($1^{\text {st }}$ Digit $=B$)
$2^{\text {nd }}$ Digit -> $\quad 0=$ normal mode 1 = telephone mode
Reg. Function
Reg. Function

only with BOS option

```
180 1st Digit
    0 = no function
    1 = display digital output status
    2 = display channel (BOS)
    3 = display telephone mode
2nd Digit (1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ Digit = 1)
    1-7 = digital output number
3'd}\mathrm{ Digit (1 }\mp@subsup{}{}{\mathrm{ st Digit = 1)}
    0 = display if active low (normal)
    1 = display if passive high (inverted)
2nd}+\mp@subsup{3}{}{rd}\mathrm{ Digit (1st Digit = 2)
            channel 00-99
2nd_44}\mathrm{ Digit (1 'st Digit = 2)
                            BOS channel 001-092, 347-510
5th Digit (1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ Digit = 2)
2nd_4*h Digit (1 }\mp@subsup{}{}{\mathrm{ st }}\mathrm{ Digit = 2)
            channel for LED F1: e.g. }40
5 Digit (1st Digit = 2) BL/MO for LED F1
    0 = one-way radio, lower band
    1 = one-way radio, upper band
    2 = two-way radio, lower band
    3 = two-way radio, upper band
```

181-183 like register 180, for LED F2-F4
only with FMS option

185
$1^{\text {st }}$ Digit -> acknowledgement-independent frame repetition
1 = yes
$0=n o$
$2^{\text {nd }}$ Digit -> number of emergency call cycles
$3^{\text {rd }}$ Digit -> tone of attention
1 = yes
$0=n o$
$4^{\text {th }}$ Digit ->
$0=$ stop bit $0+$ improved first running
$1=$ stop bit $1+$ improved first running
$2=$ stop bit $0+$ first running according to
TR-BOS
$3=$ stop bit $1+\begin{gathered}\text { first running according to } \\ \text { TR-BOS }\end{gathered}$
$5^{\text {th }}$ Digit -> $0=$ general messages for status and commands
1 = messages for DRK
(German Red Cross)
2 = messages for fire brigade
3 = messages for police
$187 \quad 1^{\text {st }}$ Digit -> FMS-code at PTT
$1=j a$
$0=$ nein
2. Stelle -> BOS-code
3. Stelle -> state code
4. Stelle -> community code (tens)
5. Stelle -> community code (units)
$4^{\text {th }}$ Digit -> construction stage
0-2
$5^{\text {th }}$ Digit -> BOS frame repetition time
0 = standard BOS 640 ms raster $7-F=0,7-1,3$ s break

1. Stelle -> car code (thousands)
2. Stelle -> car code (hundreds)
3. Stelle -> car code (tens)
4. Stelle -> car code (units)

Reset to Factory Defaults

Reg. Function

222 reset to factory defaults
223 reset to factory defaults, including poti settings

Attention!

Reset is carried out without further confirmation!

Technical Data

Operating voltage
Current consumption

Weight
Dimensions W x D x H (without gooseneck) $245 \times 220 \times 95 \mathrm{~mm}$

Input impedance 2-wire/4-wire
Input level 4-wire
Input level 2-wire

Ouput impedance 2-wire/4-wire
Output level at 600 Ohm
Audio without additional PTT keying tone
Audio with additional PTT keying tone
Set by default to

12 V
max. 800 mA
$1,5 \mathrm{~kg}$

600 ohm
$50 \mathrm{mV}(-24 \mathrm{dBm})$ to $775 \mathrm{mV}(0 \mathrm{dBm})$
$70 \mathrm{mV}(-21 \mathrm{dBm})$ to $1050 \mathrm{mV}(+2,5 \mathrm{dBm})$

600 ohm
$30 \mathrm{mV}(-28 \mathrm{dBm})$ to $550 \mathrm{mV}(-3 \mathrm{dBm})$
$30 \mathrm{mV}(-28 \mathrm{dBm})$ to $450 \mathrm{mV}(-5 \mathrm{dBm})$ 450 mV

Table of Tones				
Ton	ZVEI 1	CCIR	ZVEI 2	EEA
0	2400 Hz	1981 Hz	2400 Hz	1981 Hz
1	1060 Hz	1124 Hz	1060 Hz	1124 Hz
2	1160 Hz	1197 Hz	1160 Hz	1197 Hz
3	1270 Hz	1275 Hz	1270 Hz	1275 Hz
4	1400 Hz	1358 Hz	1400 Hz	1358 Hz
5	1530 Hz	1446 Hz	1530 Hz	1446 Hz
6	1670 Hz	1540 Hz	1670 Hz	1540 Hz
7	1830 Hz	1640 Hz	1830 Hz	1640 Hz
8	2000 Hz	1747 Hz	2000 Hz	1747 Hz
9	2200 Hz	1860 Hz	2200 Hz	1860 Hz
A	2800 Hz	2400 Hz	886 Hz	1055 Hz
B	810 Hz	930 Hz	810 Hz	930 Hz
C	970 Hz	2247 Hz	740 Hz	2247 Hz
D	886 Hz	991 Hz	680 Hz	991 Hz
E	2600 Hz	2110 Hz	970 Hz	2110 Hz
Dauer	ZVEI 1	CCIR	ZVEl 2	EEA
min.	52.5 ms	75 ms	52.5 ms	30 ms
typ.	70 ms	100 ms	70 ms	40 ms
max.	87.5 ms	125 ms	87.5 ms	50 ms

General Safety Information

Please read the operating instructions carefully before installation and setup.
The relevant regulations must be complied to when working with 230 V line voltage, two-wirelines, four-wire-lines and ISDN-lines. It is also very important to comply to the regulations and safety instructions of working with radio installations.

Please comply to the following safety rules:

- All components may only be mounted and maintained when power is off.
- The modules may only be activated if they are built in a housing and are scoop-proof.
- Devices which are operated with external voltage - especially mains voltage - may only be opened when they have been disconnected from the voltage source or mains.
- All connecting cables of the electronic devices must be checked for damage regularly and must be exchanged if damaged.
- Absolutely comply to the regular inspections required by law according to VDE 0701 and 0702 for line-operated devices.
- Tools must not be used near or directly at concealed or visible power lines and conductor paths and also not at and in devices using external voltage - especially mains voltage as long as the power supply voltage has not been turned off and all capacitors have been discharged. Electrolytic capacitors can be still charged for a long time after turning off.
- When using components, modules, devices or circuits and equipment the threshold values of voltage, current and power consumption specified in the technical data must absolutely be complied to. Exceeding these threshold values (even if only briefly) can lead to significant damage.
- The devices, components or circuits described in this manual are only adapted for the specified usage. If you are not sure about the purpose of the product, please ask your specialized dealer.
- The installation and setup have to be carried out by professional personnel.

Returning of Old Equipment

According to German law concerning electronic devices old devices cannot be disposed off as regular waste. Our devices are classified for commercial use only. According to § 11 of our general terms of payment and delivery, as of November 2005, the purchasers or users are obliged to return old equipment produced by us free of cost. FunkTronic GmbH will dispose of this old equipment at its own expense according to regulations.

```
Please send old equipment for disposal to: FunkTronic GmbH Breitwiesenstraße 4
``` 36381 Schlüchtern
>>> Important hint: freight forward deliveries cannot be accepted by us.

February \(2^{\text {nd }}, 2006\)
Subject to change, Errors excepted

\section*{Release Notes}
06.08.12 - Version Major 4a/5a English 1.0 released. Translation of Major4a/5a German V 3.05.```

